

Protein Expression Protocol & Troubleshooting in E. coli

In terms of recombinant expression, *E. coli* has always been the preferred microbial cell factory as it has multiple, significant benefits over other expression systems including cost, ease-of-use, and scale. Here, we present a general protocol of protein expression as well as a list of possible solutions when facing the challenge of expressing a new protein in *E. coli*.

I. Protein Expression Protocol in E. coli

General protocol of protein expression process from gene to protein is given below.

Phase 1: Codon Optimized Gene Synthesis and Vector Construction

- Codon and mRNA structure optimization
- Fuse gene to a protein tag and insert them into an expression vector
- Verify the correctness of construction by sequencing

Phase 2: Transform Expression Vector into *E. coli* Competent Cells

- Add expression vector to thawed competent cells
- Add heat-shocked cells to LB broth and shake
- Plate cell culture onto LB agar plates with appropriate antibiotic

Phase 3: Starter Culture

- Pick single colony of expression strain into 5 ml of LB with appropriate antibiotic
- Shake at 37°C for 3 to 5 hours

Phase 4: Expansion of Starter Culture

- Expand the culture by adding the starter culture to larger volume LB with antibiotic (room temp)
- Incubate for 1-4 hours until culture density of OD₆₀₀ reaches 0.5-0.6

Note: Top the flask with cotton or a culture flask cap to allow culture to oxygenate without getting environmental contamination.

Phase 5: Protein Expression Induction

Option 1:37°C Induction

- Induce expression by adding IPTG to a final concentration of 0.5 mM after culture has reached OD₆₀₀ 0.5-0.6
- Induce for 3-4 hours at 37°C with shaking

Note: IPTG is a frozen solution in the -20 ${}^\circ\!\!{}^\circ$ freezer.

Option 2: Room Temp (20°C) Induction

- Cool down the culture to room temperature by placing in fridge or iced water bath after it has reached OD₆₀₀ 0.5-0.6
- Induce expression by adding IPTG to a final concentration of 0.1 to 1.0 mM
- Induce overnight (12-18 hours) at room (20°C) temp with shaking

Phase 6: Cells Collection and Lysis

- Centrifuge the cells at 3,500 x g for 20 min
- Resuspend cells in ice cold PBS and re-centrifuge in an appropriate sized tube
- Remove the supernatant and freeze pellet for later processing
- Lyse cells using appropriate protocol

II. Protein Expression Troubleshooting in *E. coli*

In this section, we present different strategies for optimizing recombinant protein production in *E. coli* when encountering expression obstacles. Possible reasons and solutions in each case are discussed in the following tables.

1) No / Low protein expression

When the protein of interest cannot be detected through a sensitive technique (e.g., Westernblot) or it is detected but at very low levels (less than micrograms per liter of culture), the problem often lies in a harmful effect that the heterologous protein exerts on the cell.

Reasons	Solutions		
	Vector	Host strain	Growth conditions
Incorrect vector construction	Confirm vector by sequencing		

Your Protein Manufacturer

Rare codons	Codon optimization	Use strains supplementing rare codons (Rosetta, Codon Plus)	Lower induction temperatureGrow in poor media
Protein toxicity	 Use promoters with tighter regulation Lower plasmid copy number 	 Use pLysS/pLysE bearing strains in T7-based systems Use strains that are better for the expression of toxic proteins (C41 or C43) 	 Start induction at high OD Shorten induction time Add glucose when using expression vectors containing lac-based promoters Use defined media with glucose as source of carbon

2) Protein aggregation

The buildups of protein aggregates are known as inclusion bodies (IBs). IB formation results from an unbalanced equilibrium between protein aggregation and solubilization. So, it is possible to obtain a soluble recombinant protein by strategies that ameliorate the factors leading to IB formation.

Baaaana	Solution		
Reasons	Vector	Host strain	Growth conditions
Incorrect disulfide bond formation	 Add fusion partners, including thioredoxin, DsbA, DsbC Clone in a vector containing secretion signal to cell periplasm 	Use <i>E. coli</i> strains with oxidative cytoplasmic environment	Lower inducer concentrationLower induction temperature
Incorrect folding	 Use a solubilizing partner Co-express with molecular chaperones 	Use strains with cold-adapted chaperones	 Supplement media with chemical chaperones and cofactors Remove inducer and add fresh media Lower inducer concentration Lower temperature

Proteins with high hydrophobicity or transmembrane domains	 Add fusion tags, including GST, MBP, SUMO, etc. Generate truncated forms of protein 	Use membrane rich strains (C41/C43)	 Lower induction temperature Shorten induction time Grow in poor medium Add heat shock chaperones
---	--	--	---

3) Truncated protein

Sometimes a truncated form of protein is expressed rather than a complete wild protein. Reasons of the phenomenon and possible solutions are given below.

Reasons	Solution		
	Vector	Host strain	Growth conditions
Rare codon	Codon optimization	Use strains supplementing rare codons (Rosetta, Codon Plus)	Lower induction temperatureGrow in poor media
Protein degradation	Replace specific protease sites	Use low protease strains	 Induce at high OD Induce at low temperature Shorten induction time Use protease inhibitors when breaking cells
Imbalanced translation process of fusion protein	 Change another fusion protein Move fusion protein to C-terminal 		 Induce at low temperature Shorten induction time Change to poor media

4) Protein inactivity

Obtaining a nice amount of soluble protein is not the end of the road. The protein may still be of bad quality; i.e., it does not have the activity it should.

Reasons	Solutions	
	Vector	Host strain

Your Protein Manufacturer

Low solubility of the protein	Fuse desired protein to a solubility enhancer (fusion partners)		Lower temperature
Lack of essential post translational modification	Change expression system		
Incomplete folding	 Use a solubilizing partner Co-express with molecular chaperones 	Use strains with cold-adapted chaperones	 Monitor disulfide bond formation and allow further folding in vitro Lower temperature
Mutations in cDNA	Sequence plasmid before and after induction	Use a <i>recA</i> strain to ensure plasmid stability	Transform <i>E. coli</i> before each expression round

References:

Fakruddin M *et al* (2012). Critical factors affecting the success of cloning, expression, and mass production of enzymes by recombinant *E. coli. ISRN biotechnology*, 13;2013:590587.

Francis DM, Page R (2010). Strategies to optimize protein expression in *E. coli. Current Protocols in Protein Science*, Chapter 5:Unit 5.24.1-29.

BiologicsCorp

Your protein manufacturer

BiologicsCorp provides high-quality cost-effective recombinant protein expression services in a timely manner. Based on our in-house codon optimization technology and protein expression platform, we provide one-stop services including gene optimization and synthesis, protein expression and purification, protein refolding, endotoxin/RNase control and removal, and fermentation. Other services available include custom antibody production, and biomolecular interaction analysis.

Protein Expression Service Highlights

Guaranteed quantity and purity: Get your desired quantity and purity or your money back.

Guaranteed soluble proteins: You only get billed if solubility is achieved.

Flexible solutions: Multiple approaches for assured success.

Maximum activity: We prioritize supernatant proteins.

PROTEIN EXPRESSION

Bacterial Expression System			
Guaranteed E.coli Protein Expression	\$1,550 for 3-5mg ~85% purity soluble protein No protein, no billing		
SupernateIN™ Protein Expression	Protein with maximum biological activity High soluble expression level		
Tag-free Protein Production	Close to native protein Soluble protein with over 95% purity		
Mam	malian Expression System		
Transient Transfection	High yield: >200mg/L High transfection efficiency		
Stable Cell Line Establishment	Scalable and reproducible production 30% below industry average		
Recombinant Antibody Production	High yield: up to 1g/L expression level High-specificity: bind to corresponding antigen specifically with high-affinity		
	ther Protein Services		
Endotoxin/RNase Removal	Endotoxin level below 1 EU/µg >90% RNase removal from protein		
Fermentation	Fed-batch fermentation Protein production up to 2000 L		
Biomolecular Interaction Analysis	Label-free and real-time analysis $K_a^{}$, $K_d^{}$ and $K_D^{}$ for small molecule and protein binding interactions		
	E-mail: Sales@BiologicsCorp.com Telephone: +1 (317) 703-0614 Fax: +1 (855) 427-1516 Website: http://www.biologicscorp.com Address: Biologics International Corp 5323 East 82nd Street, Unit 109 Indianapolis, IN 46250, USA		