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1 Introduction

Recent advances in genomics, proteomics, and

bioinformatics have facilitated the use of recombi-

nant DNA technology in order to evaluate any pro-

tein of interest, without prior knowledge of the pro-

tein’s cellular location or function. The parallel use

of affinity tags with recombinant DNA techniques,

allows the facile modification of proteins of inter-

est leading to efficient identification, production,

and isolation from the host system. However, pro-

tein insolubility, conformation, stability, and struc-

tural flexibility, as well as low purification yields

and host cell toxicity are challenges that must be

resolved when microbial hosts are used to express

recombinant proteins. To address these challenges

of production and purification efficiency, fusion

tags are incorporated to increase expression yields

and influence solubility and native folding; novel

tags in combination with affinity techniques in-

crease purification yields; and proteases result in

tag removal.

In recent years, numerous fusion tags have been

developed for recombinant protein production.

While contemporary reports have included several

overviews of available affinity tags for protein de-

tection or purification [1–4], solubility enhance-

ment [5], tag removal [1], or applications [6, 7] – in

this comprehensive review, we provide an exten-

sive summary of various tags and established pu-

rification strategies. We describe several design as-

pects for these tags that should be considered for

recombinant fusion protein expression, including

amino acid composition and size; N- or C-terminal

fusions, used individually or in tandem; as well as

optimized tags, techniques, and buffer conditions

that lead to purified protein. Additionally, we dis-

cuss the availability of protocols and expression

vectors through commercial vendors or DNA
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repositories. Details of these plasmid-based de-

signs and methods are available in the Supporting

information.

2 Using protein tags to improve yields of
recombinant proteins

2.1 Enhancing protein expression and/or solubility

2.1.1 Fusion proteins affecting solubility
A common method to overcome expression obsta-

cles is to use a fusion protein strategy. In this strat-

egy, a difficult-to-express protein or peptide is

fused to one or more other proteins to stabilize ex-

pression in the soluble or insoluble fraction, with

the idea that the fusion protein will drive the re-

sulting expression. A number of fusion proteins

have been used for this purpose, including, glu-

tathione S-transferase (GST), maltose-binding

protein (MBP), thioredoxin A (TrxA), small ubiqui-

tin related modifier (SUMO), ketosteroid isomerase

(KSI), and Trp∆LE, which are outlined briefly be-

low and in Supporting information, Table S1.

While providing potential advantages in protein

expression and solubility, the fusion protein strate-

gy also presents a new set of issues, including the

removal of the carrier protein and questions re-

garding whether or not the protein of interest re-

tains native structure and activity. For example, car-

rier proteins may sterically hinder native complex

formation. Ultimately, parallel analysis of many fu-

sion proteins may be required to generate the

yields and properties of the protein of interest for

the intended application.

2.1.1.1. Proteins that increase solubility
2.1.1.1.1 Glutathione s-transferase
Glutathione S-transferase (GST) from Schistosoma

japonicum is a 26 kDa protein that has been utilized

for single-step purification of fusion proteins [8].

GST fusion proteins can be purified from crude

lysate by affinity for immobilized glutathione and

eluted under non-denaturing conditions with

10 mM reduced glutathione. GST fusion proteins

can be detected using an enzymatic assay or im-

munoassay. In many cases, the GST-tag protects

against intracellular proteolysis and stabilizes the

recombinant protein in the soluble fraction as

monomers or homodimers [9–13]. However, GST is

considered to be a poor solubility enhancer as some

GST fusion proteins are wholly or partly insoluble.

Proteins fused to GST that are enriched in either

hydrophobic regions or charged residues or are

larger than 100 kDa may contribute to insoluble ex-

pression. Insoluble GST fusion proteins may be

purified after solubilization with mild detergents

[14]. GST expression vectors, such as the pGEX se-

ries from GE Healthcare, commonly include specif-

ic protease cleavage sites between the tag and part-

ner proteins. Thus, the GST-tag can readily be re-

moved from GST fusion proteins after or during

purification, where affinity for immobilized glu-

tathione greatly simplifies purification of the pro-

tein of interest from cleavage products. The GST-

tag has been used as an N- or C-terminal tag in a

variety of expression systems, including bacteria

[8, 14], yeast [15–17], insect cells [18, 19], and mam-

malian cells [20].

In addition to advantages in expression and pu-

rification, GST-tagged fusion proteins have proved

useful in studies on protein–DNA interactions [19,

21], protein–protein interactions [22, 23], and as

antigens for vaccine studies [24].

2.1.1.1.2 Maltose-binding protein
Maltose-binding protein (MBP) is a 42 kDa protein

encoded by the malE gene of Escherichia coli K12

[25]. MBP fusion proteins have been utilized for

single-step purification by affinity to cross-linked

amylose [26]. MBP fusion proteins bound to immo-

bilized amylose are eluted under non-denaturing

conditions with 10 mM maltose. MBP fused to ei-

ther the N- and C-terminus has been shown to in-

crease the expression and folding of eukaryotic fu-

sion proteins expressed in bacteria [27–31]. Al-

though not completely understood [32], fusion of

MBP onto a protein has been shown to enhance the

solubility of the partner protein [31, 33–35]. There

are a number of vectors for generating MBP fusion

proteins that are commercially available, including

the pMAL series from New England Biolabs and

pIVEX series from Roche, which contain a specific

protease cleavage site in the region between MBP

and the multiple cloning site. In addition, there are

also commercial vectors for the expression of MBP

fusion proteins to the non-reducing environment

of the E. coli periplasm (e.g., New England Biolabs

pMAL), addition of which may improve the folding

of disulfide bond-containing proteins. Although

not generally required, MBP has been used in con-

junction with a small affinity tag to improve purifi-

cation purity [36, 37].

2.1.1.1.3 Thioredoxin A
Thioredoxins are universal oxido-reductaces that

reduce disulfide bonds through thio-disulfide ex-

change. One of the E. coli thioredoxins, TrxA, is an

11.6 kDa protein that demonstrates high solubility

in the E. coli cytoplasm and inherent thermal sta-

bility, which may be conferred to TrxA fusion pro-

teins. For example, TrxA has been used as an N- or
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C-terminal fusion protein [38, 39] to increase solu-

ble protein expression of recombinant proteins

[40]. In addition to enhancing the solubility of fu-

sion proteins, TrxA has been shown to aid in the

crystallization of proteins. Though in most in-

stances TrxA must be removed prior to structural

characterization, TrxA when joined with the linker

sequence GSAM aided crystallization of the U2AF

homology motif domain of splicing factor Puf60

[41]. Unlike GST or MBP, TrxA does not facilitate

purification on its own; small affinity tags are com-

monly used in conjunction with TrxA to enable pu-

rification.

2.1.1.1.4 Small ubiquitin-related modifier (SUMO)
In its native system, small ubiquitin-like modifier

(SUMO) protein, Saccharomyces cerevisiae Smt3, is

a form of post-translational modification that plays

roles in nuclear-cytosolic transport [42], apoptosis

[43], protein activation [44], and stability [45], re-

sponse to stress [46], and the cell cycle [47]. When

used as an N-terminal carrier protein during

prokaryotic expression, SUMO promotes folding

and structural stability, which leads to enhanced

functional production compared to untagged pro-

tein [48–54]. Unlike GST and MBP, SUMO does not

itself serve as a means for purification of fusion

proteins; however, the His6 in series with the SUMO

tag has been established to facilitate purification of

fusion proteins. One unique advantage of the

SUMO tag over other expression-enhancing carri-

er proteins is a specific SUMO protease (S. cere-

visiae UlpI), which recognizes and removes the

SUMO tag at a Gly–Gly motif.

The wild-type SUMO tag is an excellent carrier

protein in prokaryotic expression systems but is ef-

ficiently removed in eukaryotes in vivo by natural-

ly occurring SUMO proteases [55]. LifeSensors, Inc.

has engineered a SUMO-based tag, SUMOstar, that

has been used to enhance protein expression in

yeast [56, 57], insect cells [58], and mammalian

cells [59]. In addition to the SUMOstar carrier pro-

tein, LifeSensors, Inc. has also developed a

SUMOstar-specific protease.

2.1.1.1.5 N-utilization substance A (NusA)
The transcription termination anti-termination

factor, also known as N-utilization substance A

(NusA), is a 55 kDa hydrophilic protein that pro-

motes the soluble expression of even very hy-

drophobic fusion proteins in E. coli [60]. In E. coli,

wild-type NusA promotes pauses in DNA tran-

scription by RNA polymerase [61]. Because tran-

scription and translation are coupled in prokary-

otes, improvements in soluble expression of NusA

fusion proteins over other fusion proteins may re-

sult from the biological activity of NusA. NusA

slows translation and permits more time for critical

folding events to occur [60]. A direct comparison of

normally aggregation-prone proteins tagged with

either MBP or NusA showed that both MBP and

NusA enhanced solubility overall while not affect-

ing the structure of the aggregation-prone proteins

[32].

2.1.1.1.6 Protein disulfide isomerase I (DsbA)
Protein disulfide isomerase I (DsbA) is a 21.1 kDa

protein that catalyzes the formation of disulfide

bonds in E. coli [62, 63]. When fused to eukaryotic

proteins, an inactive mutant of DsbA that lacked

the periplasmic signal sequence was shown to pro-

mote the soluble expression of proteins in the 

E. coli cytoplasm [64]. Furthermore, a comparison of

DsbA and thioredoxin fusion proteins showed that

DsbA increased the solubility of fusion proteins by

two- to three-fold over thioredoxin [64]. The vec-

tors pET-39 and pET-40 available from EMD Bio-

sciences enable expression of DsbA and DsbC, re-

spectively, to the non-reducing environment of the

E. coli periplasm, which may result in improved sol-

ubility and folding of the target protein [65].

This section has outlined a number of fusion

proteins that increase the solubility of a protein of

interest and it should be clear that there is no uni-

versal solution to achieve this end. Oftentimes, par-

allel analysis of different fusion proteins must be

sought, as not only does the fusion protein affect

properties of the protein of interest but the protein

of interest also affects properties of the carrier pro-

tein. Furthermore, the use of carrier proteins, espe-

cially for those significantly enhancing solubility of

the fusion, presents obstacles for maintaining the

protein of interest in the soluble fraction after the

carrier protein is removed.

2.1.1.1.7 Mistic
Recently, a novel membrane-associating protein

from B. subtilis [72] referred to as Mistic has been

shown to enhance expression levels of eukaryotic

integral membrane proteins in E. coli, when used as

a fusion protein linked to the N-terminus of cargo

proteins [73, 74]. Mistic and its orthologs lack an

identified signal sequence. Overexpression of these

fusion partners does not result in cell toxicity, a

common result due to overloading the protein

translocation machinery. A truncated version of

Mistic shorter by 25 residues – M110 – expresses

primarily in the bacterial membrane [72]. Interest-

ingly, shorter Mistic proteins maintain comparable

levels of expression as M110 even though they are

soluble in the presence of detergents and are local-

ized mainly to the cytoplasm [75]. Mistic’s mecha-
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nism of action remains unclear; however, in some

cases the use of Mistic and its orthologs have sig-

nificantly increased levels of eukaryotic integral

membrane protein expression in E. coli [73, 74, 76].

2.1.1.2 Proteins that decrease solubility
A number of carrier proteins have been utilized to

drive expression to inclusion bodies, which pro-

tects them from intracellular degradation, provides

a simple process for recovery, and commonly leads

to the highest expression yields [66]. Furthermore,

expression to inclusion bodies may be required in

cases where protein production is toxic to the host

cell.

Despite its advantages, expression to inclusion

bodies requires solubilization with chaotropes or

detergents and subsequent refolding steps that

may ultimately affect biological activity. Therefore,

use of fusion proteins that direct expression to in-

clusion bodies is generally limited to small easily

refolded proteins and peptides. Two carrier pro-

teins that direct expression to inclusion bodies in-

clude KSI and the gene product of E. coli TrpE.

2.1.1.2.1 Ketosteroid isomerase (KSI)
Ketosteroid isomerase is an extremely insoluble

13-kDa protein [67, 68] that efficiently forms inclu-

sion bodies. Insoluble expression KSI fusion pro-

teins are commonly employed for the production of

recombinant peptides and used in conjunction with

purification tags. Utilization of KSI as a carrier pro-

tein has increased protein production levels by

two- to five-fold when compared to other methods

[68].

2.1.1.2.2 Trp∆LE
The truncated gene product of E. coli TrpE (Trp-

∆LE), a 27-kDa protein, has also been used to direct

expression of fusion proteins to inclusion bodies

[69–71].

3 Facilitating affinity purification and
emerging combinatorial tags

3.1 Selection of affinity tags and utility

Affinity tags are highly efficient tools for protein

detection, characterization, and purification. An

epitope is a short sequence of amino acids that typ-

ically serves as the antigenic determinant, or the

region to which an antibody binds. Thus, epitope

tagging is a technique in which a short sequence

(i.e., epitope) is added to a protein of interest by re-

combinant DNA methods. Used in a variety of ap-

plications including western blot analysis, im-

munoprecipitation (IP), co-immunoprecipitation

(co-IP), immunofluorescence (IF), and affinity pu-

rification, epitopes enable the determination of

protein size, concentration, post-translation modi-

fications, protein interactions, intracellular traf-

ficking, and in some cases provide a means of ob-

taining pure product (via affinity purification) in

order to attain high-resolution crystallographic or

NMR structures. The impact of protein engineering

and the extensive use of affinity tags on crystalliza-

tion techniques and structure/function studies

have been reviewed elsewhere [77–80]. Described

below are numerous affinity tags commonly used

in microbial systems, as well as relevant caveats for

their use. Well-characterized purification schemes

are briefly summarized and relevant protocols for

novel purification strategies are appropriately ref-

erenced. Additional details are provided in Sup-

porting information, Tables S2 and S3 with refer-

ences cited therein.

3.1.1 c-myc, HA, and FLAG
Traditionally, c-myc, hemaglutinin antigen (HA),

and FLAG epitopes have been used primarily

as a means of protein detection. An epitope of

the human c-myc proto – oncogene product

 (EQKLISEEDL) was one of the earliest affinity tags

developed and is highly specific to the anti-c-myc

antibody 9E10 [81]. Fused to either the N- or C- ter-

minus [82], the c-myc tag is widely used in protein

engineering approaches, including western blot

analysis, IP, co-IP, IF, and flow-cytometry [83] in

both bacteria and yeast. Although rarely used for

protein purification, it is possible to couple the

mAb9E10 to divinyl sulfone-activated agarose and

purify c-myc-tagged proteins under physiological

conditions; however, elution requires a low pH that

may adversely affect protein activity. Despite these

concerns, structural studies have been performed

using c-myc fusion proteins purified in this way

[84].

Similarly, as one of the most widely used epitope

tags in cell biology, the HA tag is a nine amino acid

sequence (YPYDVPDYA) derived from the human

influenza virus hemaglutinin protein [85, 86]. The

hemaglutinin epitope may be located within the

DNA coding region of a protein, or at the N- or C-

terminus [87]. However, the hemaglutinin epitope

may influence trafficking, folding, and function of

the target protein [88, 89].

The FLAG epitope is a short, hydrophilic oc-

tapeptide (DYKDDDDK) that can be used for anti-

body-based purification [90]. A unique aspect of

FLAG utilization is the inherent enterokinase

cleavage site located within the five C-terminal

residues of the peptide sequence [91], which is ad-
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vantageous if the recombinant protein of interest is

intended for therapeutic use, since the epitope it-

self is immunogenic. The FLAG peptide sequence

is recognized by the antibody M1, in either a calci-

um-dependent [92], or independent [93], manner;

however, additional commercial mAb choices in-

clude M2 and M5, which comprise slightly different

recognition sites and affinity. FLAG-tagged fusion

proteins can be purified using an immobilized

monoclonal antibody matrix under non-denatur-

ing conditions and eluted by lowering the pH or

adding chelating agents such as EDTA. However,

antibody-based purification matrices are in gener-

al not as stable as either Ni2+-NTA, used with poly-

histidine-tagged recombinant proteins, or Strep-

Tactin, which is used with Strep-tag II fusions, as

discussed below.

To increase the signal in protein detection ap-

plications, a recombinant protein can be designed

to include multiple epitope tags in series. Examples

include multiple copies of the hemaglutinin [94],

c-myc [95, 96], and FLAG [97] where typically three

copies are used, although nine copies of the c-myc

epitope in series have been incorporated in order

to detect very dilute proteins in yeast [98].

3.1.2 1D4
The 1D4 epitope is a short hydrophilic sequence

(TETSQVAPA) derived from the C-terminus of

bovine rhodopsin [99, 100]. Combining this epitope

and the high affinity rho-1D4 monoclonal antibody

(available from www.flintbox.com) has established

useful tools in antibody-based purification, local-

ization studies, and western blot analysis of 1D4-

tagged membrane proteins [101, 102]. Additionally,

the 1D4 enrichment strategy offers a highly specif-

ic, non-denaturing method for purifying mem-

brane proteins with yields and purities consistent

with structural characterization and functional

proteomics applications [101].

3.1.3 polyArg and polyHis
The first commercially available affinity tags were

designed from naturally occurring epitopes and

used primarily for purification. Yet, during the past

decade novel engineered tags have been optimized

for use in many cell types and for purification un-

der various expression conditions (i.e., inclusion

bodies, membrane localization).

The polyarginine (polyArg) tag was initially

used by Sassenfeld and Brewer [103] and typically

consists of five or six consecutive arginines at the

C-terminal end of a recombinant protein. A protein

containing the polyArg tag is purified by absorp-

tion to cation exchange resin SP-Sephadex, and

eluted via a linear NaCl gradient at alkaline pH.

Following purification, the C-terminus of polyArg-

tagged proteins can be removed by carboxypepti-

dase B, although poor cleavage yields and non-

specificity have been reported [104]. It is important

to note that the polyArg tag may affect the tertiary

structure of proteins whose C-terminus is hy-

drophobic [103], despite its use as a standard im-

mobilization method for electron and scanning-

probe microscopy applications [105]. This is per-

haps not surprising because of the addition of the

positive charges under neutral and acidic pH con-

ditions. This may also contribute to the observation

that the polyArg tag promotes protein internaliza-

tion [106].

In general, the polyArg tail is not the optimal

purification tag in the protein-engineering field

and its use is infrequent. In contrast, another

polyamino acid construct, the polyhistidine (poly-

His) tags are the most widely used affinity tags for

purifying recombinant proteins that lead to bio-

physical and structural studies. Advantages of the

polyHis tag include its low immunogenicity and

small size (0.84 kDa) – with composition ranging

from 3 to 10 His tags in series. In addition, many

proteins function with the polyHis tag positioned at

either the N- or C-terminus, and purification meth-

ods can be carried out under both native and dena-

turing conditions [107, 108].

To purify recombinant polyHis-tagged prote -

ins, immobilized metal-affinity chromatography

(IMAC) is used to isolate the metal-binding pep-

tides based on the interaction between the nega-

tively charged His and transition metal ions (Ni2+,

Co2+, Cu2+, Zn2+) immobilized on a matrix [109]. De-

veloped by Hochuli et al. [110], Ni(II)-nitrilotri-

acetic acid (Ni2+-NTA) exhibits high affinity for ad-

jacent histidine residues; provides an inexpensive

matrix that withstands multiple regeneration cy-

cles under stringent conditions; and permits disso-

ciation of bound recombinant proteins by an imi-

dazole gradient (20 to 250 mM for polyHis-tagged

fusion proteins; [111, 112]), changes in pH, or met-

al chelation. During purification, non-specific

binding of host proteins can occur and may be

overcome by shorter incubation steps (3 h or less),

or a low concentration of imidazole, where typical-

ly 2–50 mM is recommended in column washes. It

is important to note that the use of imidazole may

result in protein aggregates and affect activity,

competition studies, NMR experiments, or crystal-

lographic trials [112]; therefore, dialysis is recom-

mended in order to remove residual imidazole fol-

lowing purification. PolyHis-tagged proteins can be

purified by IMAC under denaturing conditions, and

then refolded (reviewed in [113]).
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Since the first recombinant protein to be suc-

cessfully purified with a Ni2+-NTA matrix – Dihy-

drofolate reductase (DHFR) fused to a polyHis-tag

expressed in E. coli [114] – novel matrices (i.e.,

TALON) have been developed for this affinity tag.

When directly compared to Ni2+-NTA, the use of

TALON has resulted in decreased levels of non-

specifically bound proteins and consequent yields

consisting of increased purity [115, 116]. TALON

consists of Co2+-carboxylmethylaspartate (Co2+-

CMA) that is coupled to resin. Following Co2+-CMA

matrix development, a natural 19-residue histidine

affinity tag [117] with optimal binding to TALON

[115] has been reported. Overexpression with the

histidine affinity-tag has been demonstrated in

bacteria with N-terminal fusions to chlorampheni-

col acetyltransferase (CAT), DHFR, and green flu-

orescent protein (GFP) that were eluted by de-

creasing pH (5.0) or increasing imidazole (150 mM)

concentration [115]. More recently, Dong et al. [118]

have developed an artificial chaperone-assisted

IMAC method for the refolding and purification of

a polyHis-tagged protein from solubilized inclu-

sion bodies with increased refolding efficiency.

IMAC technology combined with polyHis-tag

recombinant protein expression continues to dom-

inate generic single-step purification strategies

leading to the biophysical manipulations of

polypeptides; however, there are a few caveats to

note. Addition of a polyHis-tag may affect the func-

tion of the targeted protein or result in weak bind-

ing to select matrices as a result of the change in

protein charge; however, these aspects may be cor-

rected by changing the location of the polyHis-tag

(i.e., N- vs. C-terminus), incorporating a flexible

polylinker, or increasing the number of histidine

residues. As a consequence of the latter aspect, Lee

and Kim [119] have developed a vector-based strat-

egy using a single insert to optimize the molecular

engineering of target genes with different polyHis-

tag lengths. Furthermore, IMAC should not be em-

ployed when purifying proteins with a metal center

since the metal itself could be adsorbed to the col-

umn; and purification should not be attempted un-

der anaerobic conditions, since Ni2+-NTA will be

reduced, and therefore ineffective, under that envi-

ronment. The presence of inherent cysteine- or

histidine-rich regions in host proteins may result

in non-specific binding, leading to yield contami-

nation or decreased purification efficiency. Subse-

quently, a strategy has been designed to increase 

E. coli product yields by engineering a strain to be

deficient in three prevalent host proteins, which

under native conditions are a significant fraction of

the eluate [120]; as a result of gene knockouts, pu-

rification of a recombinant polyHis-tagged protein

resulted in increased yields [120].

3.1.4 Streptavidin binding tags
The original Strep-tag (WRHPQFGG) was selected

from a random genetic library [121] based on its

affinity to the streptavidin core – a proteolytically

truncated version of the bacterial protein [122]. To

permit greater flexibility and affinity to an engi-

neered variant of streptavidin, referred to as Strep-

Tactin [123, 124], Strep-tag II is a small affinity

peptide (WSHPQFEK) that was simultaneously

optimized. Strep-tag II is inert, largely resistant to

cellular proteases, can be used with mild deter-

gents, and optimal for the purification of recombi-

nant proteins under physiological conditions. How-

ever, Strep-tag II is not well suited for purification

strategies that use denaturing conditions. Dissoci-

ation of Strep-tag II from Strep-Tactin occurs with

mild buffer conditions in the presence of D-biotin;

or if resin regeneration is preferred, then D-

desthiobiotin is used. An advantage of Strep-tag II,

when compared to polyHis-tag purification, is its

independence from metal ions during purification

strategies. If metalloproteins are the recombinant

protein of choice, then the Strep-tag is optimal

[125].

Strep-tag II fusion proteins have been incorpo-

rated and retained for protein crystallography [126,

127] and employed in a variety of hosts, including

bacteria [128, 129] and yeast [130–132]. Strept -

avidin-binding peptide (SBP) is the larger 38 amino

acid peptide that was selected based on its in-

creased affinity to streptavidin [133]. SBP-tagged

proteins have been expressed and purified in bac-

teria [134] under mild elution conditions of biotin

(2 mM).

3.1.5 Additional affinity tags used in microbial hosts
Alternative affinity purification tags include the

calmodulin-binding peptide, chitin-binding do-

main, cellulose-binding domain, S-tag, and Softag3.

Calmodulin-binding peptide consists of 26

amino acids derived from the C-terminus of human

skeletal muscle myosin light chain kinase [135],

which tightly binds calmodulin in the presence of

0.2 mM CaCl2 [136]. Nanomolar affinity ensures

that stringent washing conditions result in few con-

taminating proteins and pure yields of recombi-

nant proteins. Detergents (up to 0.1%) and reducing

agents are compatible during recovery steps of

calmodulin-binding peptide fusions [137]. Calmod-

ulin-binding peptide is only suitable for expression

and purification in bacterial hosts since no en-

dogenous host proteins interact with calmodulin.

In eukaryotes including yeast, this affinity tag may
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disrupt calcium-signaling pathways and induce

protein–protein interactions in a calcium-depend-

ent manner [138].

Similarly, fusions tags consisting of the chitin-

binding domain and inteins have been expressed

and purified in bacterial hosts [139, 140]. The

chitin-binding domain consists of 51 residues from

Bacillus circulans [141], and may be fused to either

the N- or C-terminus. In general, this affinity tag is

combined in tandem with self-splicing inteins

[142–144] and is commercially available via the

 IMPACT™ (Intein-Mediated Purification with an

Affinity Chitin-binding Tag) system. A chitin ma-

trix is employed for affinity purification of the re-

combinant protein, whereas self-cleavage of the

thioester bond is induced by a thiol reagent (e.g.,

1,4-dithiothreitol or β-mercaptoethanol) or pH ad-

justment combined with a temperature shift [144,

145]. To reduce non-specific binding, either non-

ionic detergents or high salt concentrations are

used.

Cellulose-binding domains are non-catalytic

domains that vary in size (4–20 kDa) and affinity for

their natural substrate [146]. These domains may

be fused to the N- or C-terminus and bind to cellu-

lose over a wide-range of pH (3.5–9.5). Cellulose

matrices are an attractive method for purification

since cellulose inherently maintains a low non-

specific affinity. In general, cellulose-binding do-

main interactions with cellulose are so strong that

they require the use of chaotropic agents, such as

urea or guanidine hydrochloride, for dissociation.

Thus, protein refolding is required following elu-

tion. However, ethylene glycol has been used as a

milder elution condition when cellulose-binding

domains of other families have been incorporated

as an affinity tag and bind to alternative forms of

cellulose matrices with lower affinities. Nahalka et

al. [147] have recently described a purification

strategy that induces cellulose-binding domain-

tagged fusions to aggregate, which results in their

selective isolation via differential centrifugation

steps.

The S-tag is a 15-residue soluble affinity tag

that binds to the S-protein, derived from RNaseA

[148, 149]. This interactive complex (S-tag/S-pro-

tein) results in micromolar affinity – dependent

upon pH, temperature, and ionic strength [150].

The S-tag itself enables colorimetric detection via

western blot analysis or a rapidly detected assay

dependent upon ribonucleolytic reconstitution and

activity. When purified from the S-protein matrix,

the S-tag is eluted under harsh conditions (i.e.,

pH = 2). The S-tag has enabled the purification of

recombinant proteins in bacteria [151], and is typ-

ically used as a dual-tagging system that incorpo-

rates selective protease cleavage sites.

Softag3 is an 8-residue (TKDPSRVG) peptide

that binds with high affinity to polyol-responsive

mAb, and is eluted from antibodies under mild con-

ditions consisting of a low molecular weight poly-

hydroxylated compound and non-chaotropic salt

[152]. Although less frequently employed as a re-

combinant protein, Softag3 has been used for the

purification of multi-subunit enzyme complexes

[152, 153] and implemented to study protein inter-

actions [154]. Softag3 is commercially available

through neoclone®.

In contrast to affinity purification, the genetical-

ly engineered HaloTag® (Promega) has been de-

signed to enhance expression and solubility of re-

combinant proteins in bacterial hosts, as well as to

provide an efficient means of protein purification

coupled with tag removal by TEV protease-mediat-

ed proteolytic cleavage [155]. Ohana et al. demon-

strated the efficacy of HaloTag® for protein expres-

sion and purification by evaluating 23 human pro-

teins recombinantly expressed in E. coli. Each

 heterologous protein was fused to the HaloTag®,

MBP, GST, and His6 at its C-terminus. Results indi-

cated that an overwhelming 73% of proteins were

produced in soluble form when fused to the

HaloTag®, compared to 52, 39, and 22% of soluble

proteins fused to MBP, GST, or His6, respectively

[155]. HaloTag® technology includes a synthetic

linker which covalently binds to a purification ma-

trix leading to increased purification yields and

 purity when compared to affinity purification

schemes. The versatility associated with the

HaloTag® includes a variety of ligands applicable

for protein  visualization, trafficking, and turnover

[156, 157], as well as analysis of protein interactions

[156].

3.2 Tandem affinity purification and dual-tagging
methods

Unfortunately, no single affinity tag is ideal from

every experimental perspective. Therefore, to in-

crease the versatility of tags and downstream ap-

plications, novel dual-tagging methods have been

developed for different needs. Two affinity tags ex-

pressed in tandem (i.e., tandem affinity purification

(TAP); [158]) enable the use of multiple purifica-

tion strategies. By incorporating a solubility-en-

hancing tag in combination with a purification tag

(e.g., MBP combined with His6; [159]), improve-

ments in solubility and expression yields as well as

methods for efficient purification are provided. A

fusion can be included to evaluate recombinant

protein expression (detected via an epitope or
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GFP) followed by a tag optimal for purification

(e.g., GFP-His6 [160] or GFP-His10 [161]).

Tandem affinity purification is an approach

where the protein of interest is fused in-frame to

two affinity tags, generally separated by a protease

cleavage site. The original TAP tag consisted of a

calmodulin binding peptide, a TEV cleavage site,

followed by two immunoglobulin binding domains

of Staphylococcus aureus protein A (ProtA) [158]

and demonstrated maximum protein recovery

compared to alternative affinity tags such as

FLAG-, Strep-, His-, calmodulin-binding protein-,

and cellulose-binding domain-tags [162, 163]. TAP

tagging involves two sequential purification steps

as illustrated in Fig. 1 and has been implemented in

microbial systems. Combinatorial tagging has been

a useful strategy to evaluate the genome scale map-

ping of protein interaction networks in yeast [96,

164–166] and may also provide a strategic means of

purifying heterodimeric or higher-order protein

complexes where each protein is selectively fused

to a different tag by recombinant DNA methods.

Dual-tagging constructs, such as GFP-His6, of-

fer an additional method of detection using in vivo

fluorescence microscopy instrumentation or in vit-

ro techniques. Recently, the intrinsic fluorescence

of GFP and its variants have been used to rapidly

evaluate positive clones by in-gel fluorescence

techniques [167, 168], in addition to the use of GFP

fluorescent standards and established protocols

[169] permitting the estimation of recombinant

protein concentration via western blot analysis.

Multiple in-depth reviews of TAP tags and pu-

rification schemes are currently available [5, 170,

171]. Detailed elements of combinatorial cassettes

used for dual-tagging and TAP strategies, as well as

vectors available to the bacteria and yeast research

communities, relevant methods, and protocols are

provided in Supporting information, Tables S3 and

S5.

4 Removal of affinity tags: Efficiency of
proteases

4.1 Common proteases

Removal of carrier proteins and affinity tags is of-

ten necessary when the presence of the fusion tag

affects the structure or biological function of the

protein of interest. To achieve this end, specific se-

quences are included between the tag(s) and native

protein and then cleaved with site-specific pro-

teases. Common proteases include enterokinase

[172], factor Xa [8], SUMO protease [48], tobacco

etch virus (TEV) protease [173], thrombin [174,

175], and 3C [176], outlined in Supporting informa-

tion, Table S4.

Proteases may cleave fusion proteins at unin-

tended sites [151] and the buffer conditions that

promote protease activity and specificity may not

be suitable for fusion protein and product solubili-

ty [177]. It should be noted that protease cleavage

efficiency might vary in an unpredictable manner

with each fusion protein. Cleavage efficiency may

be improved by applying an increased concentra-

tion of the protease or by prolonging the digestion.

In some cases, the cleavage site is sterically hin-

dered and improvements may result by the inclu-

sion of extra amino acids that flank the cleavage

site.

4.1.1 Enterokinase
Enterokinase is a protease that recognizes

DDDDK^X and cleaves at the carboxyl lysine with

variable efficiencies that depend on the amino acid

Figure 1. Illustrations of optimized tandem affinity purification (TAP)

strategy, adapted from the following publications [158]. Overview of the

TAP strategy for a dual-tagging construct consisting of a calmodulin-bind-

ing peptide, TEV protease cleavage site, followed by two IgG-binding units

of protein A. The recombinant fusion protein is recovered from cell ex-

tracts using the protein A tag. Following repetitive wash cycles, the bound

IgG material is then released by protease cleavage. Any residual contami-

nants are removed by a second purification step that uses the affinity of

calmodulin-binding peptide for calmodulin beads. The bound material is

released with EGTA resulting in efficient and high-purity recovery of re-

combinant proteins.
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in the X position. For example, enterokinase cleav-

age efficiency varied from 61% for proline to 88%

for alanine in the X position [178]. Although en-

terokinase has been shown to cleave at unintended

sites [172, 179], it remains useful in some applica-

tions due to the internal enterokinase recognition

site in the FLAG tag (DYKDDDK).

4.1.2 Factor Xa
Factor Xa is a protease that recognizes I(E/D)

GR^X, where X can be any amino acid except argi-

nine or proline [180], and cleaves after the carboxyl

arginine. Ineffective and non-specific proteolysis

has been reported for factor Xa [181, 182], although

factor Xa has been used successfully [183]. Factor

Xa consists of two disulfide-linked chains of 27 and

16 kDa; therefore, the activity of factor Xa may de-

crease in buffers with reducing agents.

4.1.3 SUMO protease
The SUMO protease (S. cerevisiae Ulp1) recognizes

the tertiary structure of SUMO and cleaves at the

N-terminus of the fused protein irrespective of the

sequence with the only exception being proline

[48]. The SUMO protease cleaves efficiently under

a wide range of buffer conditions, pH (5.5–10.5) and

temperatures (4–37°C). Additionally, SUMO pro-

tease has been shown to efficiently cleave fusion

proteins in 2 M urea without yielding non-specific

cleavage products [48], which may facilitate purifi-

cation of SUMO-tagged proteins produced in inclu-

sion bodies.

4.1.4 Tobacco etch virus (TEV) protease
Tobacco etch virus (TEV) protease recognizes

 ENLYFQ^S and cleaves between glutamine and

serine [184–186]. TEV protease is highly specific,

active on a variety of substrates, and cleaves effi-

ciently at low temperatures [173]. One distinct ad-

vantage of TEV protease compared to other com-

monly used proteases is that “in house” methods

have been optimized in order to express and puri-

fy the enzyme [187, 188]. As a direct result, stabiliz-

ing mutations and truncations of the enzyme have

improved TEV protease activity and expression

yields. Although wild-type TEV has been shown to

cleave itself and result in greatly diminished activ-

ity [188], a mutation (S219V) not only confers re-

sistance to unintended cleavage and autoinactiva-

tion but also increases activity of the enzyme by

two-fold [189]. In addition to the S219V stabilizing

mutation, an engineered TEV protease that lacks

the C-terminal residues 238–242 further improved

expression yields in E. coli, where yields were

 nearly 400 mg/L [189].

4.1.5 Thrombin
Thrombin is a protease that recognizes LVPR^GS

and cleaves between arginine and glycine

[190–192]. Although thrombin cleavage at the des-

ignated sequence is relatively specific, there have

been reports of thrombin cleavage at alternative

sites [193]. Additionally, impurities in commercial

thrombin preparations, most notably plasmin, have

resulted in non-specific cleavage products in the

past [193, 194], but modern purification methods

have improved thrombin purity [195]. However,

thorough characterization of cleaved products

must be performed following the use of any pro-

tease.

Despite these caveats, thrombin may play a spe-

cific role in the preparation of membrane proteins

for structural characterization as thrombin was de-

termined to be insensitive to an entire panel of de-

tergents in a recent study by Vergis and Wiener

[177]. In addition to advantages in detergent sensi-

tivity, thrombin is efficiently removed from cleav-

age products by benzamidine sepharose.

4.1.6 3C and PreScission™
The 3C protease is derived from human rhinovirus

(HRV 3C) and recognizes the exact residue se-

quence (ETLFQ^GP) as the native enzyme where

it cleaves between glutamine and glycine [176].

This 22 kDa protease maintains optimal activity at

4°C and has been constructed in combination with

His-, GST-, NusA, S-, StrepTag II-, and Trx-tags

(EMD4Biosciences). A genetically engineered de-

rivative of HRV 3C, PreScission™ (GE Healthcare)

has been designed to cleave selectively between

the glutamine and glycine of the LEVLFQ^GP

recognition site [176, 196].

5 Conclusion

In this post-genomic era, the emergence of bioin-

formatics combined with proteomic research en-

deavors has accelerated the development of fu-

sions tags. High-throughput protein expression

and purification maintain a pivotal role in structur-

al biology (reviewed in [6]). The polyHis-tag IMAC

purification process has enabled numerous struc-

tural studies; in fact, more than 60% of the all pro-

tein structures that exist include a polyHis-tag [78].

This well-characterized purification strategy has

been optimized recently for high-throughput on-

chip purifications using protein microarrays in or-

der to evaluate protein function [197]. Moreover, an

automated IMAC purification strategy has been de-

scribed [198] which is likely to have a significant,

positive impact on the pharmaceutical industry
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and drug design. We anticipate that further ad-

vances in affinity tags and complementary assays

integrated with high-throughput technologies will

provide additional insights into protein-interaction

networks, accelerate the discovery of new drug tar-

gets and therapeutics, and increase our ability to

investigate protein structure–function relation-

ships that are presently inaccessible due to techni-

cal limitations.
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